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 The idea that humans and laboratory animals can become physically dependent on 

marijuana or its primary psychoactive constituent, delta-9-tetrahydrocannabinol (THC), is 

gaining acceptance.  However, there are no currently approved pharmacotherapies to treat 

cannabinoid withdrawal.  The objective of this thesis was to evaluate whether elevating 

endogenous anandamide levels using mice lacking fatty acid amide hydrolase (FAAH), the 

 ix 
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enzyme responsible for anandamide metabolism, would ameliorate THC dependence.  

Mice were treated subchronically with a low or high THC dosing regimen and challenged 

with the CB1 receptor antagonist, rimonabant, to precipitate withdrawal.  Following 

subchronic THC treatment, rimonabant precipitated a significant increase in paw flutters 

that was dependent on THC dose.  However, FAAH-/- mice displayed a similar magnitude 

of withdrawal responses as wild type control mice, regardless of subchronic dosing 

regimen.  Finally, rimonabant was equipotent in precipitating withdrawal responses in both 

genotypes.  Collectively, these results demonstrate that FAAH-/- and +/+ mice show 

identical THC dependence, thus arguing against the notion that elevating anandamide 

levels through FAAH suppression will reduce cannabinoid withdrawal. 
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Introduction 
 

 

Cannabis sativa, the Marijuana Plant 

 The therapeutic and recreational use of marijuana, or Cannabis sativa, has been 

noted for many centuries.  Marijuana is the most widely used illicit drug in Western 

cultures (Pacher et al. 2006). Cannabis 

sativa is an annual plant.  It can reach a 

height of 15 ft. depending on the region 

of the world it is grown.  The plant is 

dioecious; the male reproductive 

components are on one plant while the 

female reproductive components are on 

another plant (Neumeyer and Shagoury, 

1971). Delta-9-tetrahydrocannabinol (THC) was discovered to be the primary active 

constituent and is responsible for the euphoric properties produced by the plant (Gaoni and 

Mechoulam, 1964). THC is classified as a cannabinoid. Cannabinoids are a class of 

compounds that bind to one of two subtypes of receptors, named for their affinity and 

activation by the active constituents of the plant Cannabis sativa (Howlett et al, 2002).  

This cannabinoid is present in the stalk, leaves, flowers and seeds of the plant and also in 

Figure 1: Chemical structure of 
Delta-9-tetrahydrocannabinol 
Figure 1: Chemical structure of 
Delta-9-tetrahydrocannabinol 
Figure 1: Chemical structure of 
Delta-9-tetrahydrocannabinol 

 1 



www.manaraa.com

  2
   
the resin secreted by the female plant (Ashton, 2001). The plant contains over 420 

chemical components and of those, 66 are considered cannabinoids (Turner et al., 1980). 

 

Cannabinoid Chemical Pharmacodynamics and the Endocannabinoid System 

  Following the discovery of THC, some of the first evidence for the existence of 

cannabinoid receptors in the brain started in the 1980s with the demonstration of specific 

binding of CBs to a specific receptor (Devane et al., 1988).  Some of this compelling 

evidence for a CB receptor was from structure-activity relationship studies showing that 

slight alterations in structure increased potency or rendered THC inactive (Little et al., 

1988).  The primary site of action was found to be the G protein coupled receptor CB1 

(Matsuda et al., 1990) and CB2 receptor (Munro et al., 1993).  The receptors were then 

cloned and research in the cannabinoid field increased (Matsuda et al. 1990).  There now 

stands evidence of at least two difference cannabinoid receptors, CB1 and CB2 (Pertwee, 

1999) and perhaps a third, CB3 (Jarai et al., 1999; Breivogel et al. 2001; Zimmer et al., 

2001; Zygmunt et al. 2002).  There are several endogenous ligands that bind to these 

receptors, including anandamide (Devane et al., 1992), 2-arachidonylglycerol (2AG) 

(Mechoulam et al., 1995), 2-arachidonyl-glyceril-ether (Hanus et al., 2001), virodhamine 

(Porter et al., 2002) and N-arachidonyl-dopamine (NADA) (Huang et al. 2002).  CB1 

receptors are most abundant in the brain and CB2 receptors are found predominantly in the 

periphery, primarily immune and hematopoietic systems.  A large amount of scientific 

evidence has been collected indicating that brain CB1 receptors mediate most of the 

behavioral and neurochemical properties of cannabinoids.  The CB1 receptor is one of the 
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most abundant receptors in the CNS, having high concentrations in the cerebellum, 

hippocampus, striatum, globus palladum, and substantia nigra (Herkenham et al., 1991; 

Matsuda et al., 1993), areas which influence tolerance effects (Di Marzo et al. 2000), 

physical dependence (Tanda et al., 1999) and rewarding effects (Tanda et al., 1997; Tanda 

et al., 2000). 

 The endocannabinoid anandamide and its receptors reside within the neuronal lipid 

membranes and act as neuromodulators 

though intracellular G-proteins 

controlling cyclic adenosine 

monophosphate formation and Ca+ and 

K+ ion transport. Therefore, this system 

may have significant interactions with other systems and neurotransmitters including 

opioid and monoamines.  Specifically, THC has been shown to increase the release of 

dopamine from the nucleus accumbens and prefrontal cortex (Tanda et al., 1997).  This 

effect, which is common to many drugs of abuse including heroin, may contribute to 

reinforcing properties (Ashton 2001).  Intracellular degradation of anandamide is carried 

out by the integral membrane protein fatty acid amide hydrolase or FAAH. 

Figure 2: Chemical structure of anandamide Figure 2: Chemical structure of anandamide 

 

Pharmacokinetics of Cannabinoids 

  Herbal cannabis is traditionally inhaled and approximately 50% of the THC is 

inhaled in the smoke with the majority of this directly absorbed by the lungs (Ashton, 
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2001).   Cannabinoids can also be taken orally, injected, transdermally or given rectally 

(Perlin et al., 1985; Mattes et al., 1993).  THC absorption via inhalation is rapid, resulting 

in peak blood levels which are analogous to intravenous administration (Ohlsson et al., 

1981).  The bioavailability of THC is much less following oral administration than the 

amount absorbed from smoked marijuana.  A person taking the same dose orally as one 

smoking will have blood concentrations of about 25-30% of the smoker, partly because of 

the first-pass metabolism in the liver.  The onset of action is delayed to between 0.5 to 2 

hours but the duration of action is prolonged because of the continuous slow absorption 

from the gastrointestinal tract (Ashton, 2001).   

  Once THC and other cannabinoids are absorbed, they distribute quickly to all other 

tissues depending on the blood flow.  THC is exceptionally lipid soluble and can 

redistribute from various tissues and blood and accumulate in adipose tissue (Klausner 

and Dingell, 1971).  In rodents, a biphasic curve has been described where blood levels 

decline much more quickly in the α phase and significantly slower in the β phase (Agurell 

et al., 1970; Lemberger et al., 1970; Lemberger et al., 1971).  The half life (t1/2) of the α 

phase is similar in all species studied with a t1/2 of 30 minutes. The β phase t1/2  is longer 

than the α phase and varies with different species.  Human chronic marijuana users were 

found to have a β phase t1/2 of 27 hours (Lemberger et al., 1970; Lemberger et al., 1971).  

The neocortical, limbic, sensory and motor areas reach high concentrations of THC and 

other cannabinoids (Ashton 2001).    

  Cannabinoids are metabolized in the liver.  This metabolism may also contribute to 

some of the effects of cannabis.  One of the major metabolites is 11-hydroxy-THC and 
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could possibly be more potent than THC.  There are over 20 metabolites of THC, some 

are psychoactive and have very long half-lives.  These metabolites are excreted in the 

urine (25%) but 65% are reabsorbed by the gut, prolonging their actions (Ashton 2001). 

 

Pharmacological Effects in Laboratory Animals 

 Several methods have been devised to evaluate the pharmacological effects of 

cannabinoids on laboratory animals.  Dr. Billy Martin’s group was the first that routinely 

assessed four behavioral pharmacological indices that predict cannabinoid activity. These 

assays include locomotor inhibition, antinociception, ring immobility and hypothermia and 

have been coined the “tetrad.”  Locomotor inhibition examination tests motor sedation.  

The ring immobility assay is a method for analyzing the cataleptic effect of cannabinoids.  

Catalepsy is defined as the loss of voluntary motion in which the limbs remain in the 

position they are placed.  Antinociception is measured with the tail-flick test.  Changes in 

body temperature are measured also.  While none of these behaviors is especially selective 

for any class of drugs, collectively these assays provide a high degree of confidence that it 

is in fact a cannabinoid effect. 

 

Pharmacological Effects in Humans 

  In the latter part of the 19th century, many human cannabis experiments were 

conducted.  It was only in 1967 when pure synthetic THC became available for human 

studies (Agurell et al., 1986).  The acute pharmacological effects of marijuana in humans 

begins within minutes after inhaling cannabis smoke with an increase in heart rate and 
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relaxation and enlargment of the bronchial passages.  The blood vessels in the eyes expand 

and make the eyes appear red (Neumeyer and Shagoury, 1971).  As THC enters the brain, 

it acts on the reward system creating a euphoric feeling or a “high.” As mentioned before, 

THC activates this reward system in the same way that nearly all drugs of abuse do, by 

stimulating brain cells to release the chemical dopamine (Chen et al., 1990; French, 1997).  

The cannabis user may also experience dry mouth, hunger, and drowsiness.  Marijuana is 

also known to produce untoward effects, such as anxiety, fear, or panic. 

  Heavy marijuana use may inhibit a person's ability to form memories, recall events, 

and shift attention from one thing to another (Fletcher et al., 1996; Pope and Yurgelun-

Todd, 1996). THC also binds to receptors in the cerebellum and basal ganglia, parts of the 

brain that regulate balance, posture, coordination of movement, and reaction time. 

Consequently, it is not surprising that acute marijuana intoxication upsets coordination and 

balance (Ameri, 1998).  Individuals who have taken high doses of the drug may experience 

acute toxic psychosis, which includes hallucinations, delusions, and depersonalization - a 

loss of the sense of personal identity, or self-recognition (Graham et al. 1998; Gilman et al. 

1998).  

 
Physical Dependence in Laboratory Animals 

  There are two general types of dependent measures that are used to access 

withdrawal in laboratory animals.  The first is the use of operant procedures which is 

described as animals that have been previously trained to emit an operant response (i.e. 

lever pressing) for food reinforcement will exhibit decreases in response rates during 
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withdrawal.  The second approach is the recording the occurrence of behavioral and 

physiological unconditional responses.  There are two types of protocols that are used to 

induce withdrawal in a drug-dependent animal, abstinence withdrawal and precipitated 

withdrawal.  In the abstinence withdrawal procedure, drug administration is abruptly 

stopped following a long exposure to the drug.  The pharmacodynamic and 

pharmacokinetic characteristics of the particular drug and the degree of dependence 

determine the intensity and onset of the specific withdrawal syndrome.  The second 

method induces withdrawal by administration of a receptor antagonist which displaces the 

drug immediately causing the withdrawal effects. Again, characteristics of the particular 

drug and the degree of dependence play determining roles in the display of precipitated 

withdrawal symptoms.  

 The development of rimonabant and other selective CB1 receptor antagonists has 

provided useful tools to investigate cannabinoid pharmacology.  Rimonabant was the first 

selective and orally active antagonist of the brain cannabinoid receptor (Rinaldi-Carmona 

et al., 1994).  It has been useful, not only in showing if the acute actions of an agent are 

mediated through a CB1 receptor mechanism and endocannabinoid tone, but also to 

precipitate withdrawal symptoms following subchronic administration of cannabinoids in 

dogs (Lichtman et al., 1998), rats (Aceto et al., 1995; Tsou et al., 1995) and in mice (Cook 

et al., 1998; Rubino et al., 1998).  The THC precipitated withdrawal syndrome consists of 

a variety of observed somatic signs mainly including front paw fluttering, “wet dog” 

shakes, and head shakes and some studies have included a measure of time spent hind leg 
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scratching.  Rimonabant has been shown to precipitate THC withdrawal effects following a 

low dose THC regimen with only a few treatments (Cook et al., 1998).   

 

Physical Dependence in Humans 

Cannabis is not commonly viewed as an addictive drug, but there are users who 

find it extremely challenging to stop and there is still controversy on a withdrawal 

syndrome in humans. The DSM-IV does not classify cannabis withdrawal symptoms as 

being clinically significant and the issue of cannabis having a withdrawal syndrome is 

under constant controversy.   Some studies have suggested that the occurrence of cannabis 

dependence in those individuals who have ever tried the drug varies from 10-15% 

(Anthony et al., 1994; Budney et al., 1999)  and rates of dependence tend to increase with 

the frequency of use.  Using DSM-IV criteria, individuals using regularly on a weekly 

basis over several years, have been shown to have dependence rates ranging from 57 to 

92% (Swift et al., 2000).  Nonetheless, the knowledge relating to the degree, formation, 

and consequences of dependence on cannabis is limited.  

  Withdrawal is a strong indicator of physiological dependence and work done by 

Budney et al. in 1999, Haney et al. in 1999b and Coffey et al. in 2002 show that upon 

cessation of prolonged cannabis use there are symptoms reported that fit the criteria of a 

withdrawal syndrome. Symptoms including nervousness, restlessness, sweating, and 

headaches have been reported.  In 1999, Budney and colleagues found that people seeking 

treatment due to their marijuana dependence rated their withdrawal symptoms severe and 

reported a history of many of these symptoms during past abstinence periods.  The 
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consistency of these detailed symptoms within the Budney et al. studies and alongside 

other recent studies across the field suggests that a valid marijuana withdrawal syndrome 

occurs in a significant number of abusers who abruptly stop using marijuana (Jones et al., 

1976; Georgotas and Zeidenberg, 1979; Haney et al., 1999b).  Also, the amount and 

magnitude of these withdrawal symptoms suggest that these effects may contribute to the 

development of dependence problems and may negatively manipulate attempts to stop 

using the drug (Budney et al., 1999).  Tanda and colleagues conclude that “…marijuana 

has as much potential for abuse…as cocaine and heroin” (Tanda et al., 2000).   

  Many of the early investigations into human physical dependence on cannabis were 

outpatient case studies and lacked experimental controls.  This made it difficult to associate 

the information found with cannabis use alone (Jones et al., 1981).  Early experiments also 

revealed that cessation after frequent cannabis use showed several specific symptoms.  

These symptoms included autonomic symptoms, insomnia, loss of appetite and feeling 

“jittery” (Williams et al., 1946).  When THC versus placebo was given to individuals, 

abstinence symptoms such as tension, anger, restlessness, insomnia and decreased appetite 

were observed (Bachman et al. 1979).   

  Latest laboratory studies have mostly supported the appearance of withdrawal 

symptoms from cannabis in humans.  Kouri et al. (1999) showed that people who 

abstained from marijuana use showed more aggression and more depression over controls 

across a 7 day trial (Kouri et al., 1999).  Haney and colleagues found that cessation after 

prolonged exposure to smoked THC caused a decrease in food intake, increased anxiety, 
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and irritability (Haney et al., 1999b).  The researchers also looked at oral THC opposed to 

smoked and found similar results along with sleep disturbances (Haney et al., 1999a).   

 

Biochemical Changes due to Chronic Cannabinoids 

 Although it is known that repeated stimulation of CB1 receptors by THC and other 

cannabinoid agonists is needed to develop cannabinoid dependence, recent research is just 

beginning to elucidate the underlying mechanisms of action.  There are many areas of 

interest that include analyzing changes in CB1 receptor density, looking at the signal 

transduction pathway of the receptor and other neurochemical systems that have an affect 

on, or are affected by, these processes.  Studies have used the strategy of analyzing 

behavioral withdrawal signs to reveal the interaction of cannabinoid dependence and 

neuroadaptions.   

 Using radioligand binding, it is generally seen that repeated treatment with a 

cannabinoid agonist results in a decrease in CB1 receptor density in the brain (Romero et 

al., 1998; Breivogel et al., 1999).  There was a significant decrease seen in the G-protein 

activity in many brain regions after daily injections with THC for 21 days.  These regions 

included the hippocampus, cerebellum, caudate-putamen, globus pallidus, substantia nigra, 

septum and several different regions of the cortex.  Not only was this region-dependent, 

but also this desensitization was time-dependent and looked to be specific to CB1 receptors  

(Breivogel et al., 1999).   

 There appears to be a link between cannabinoid withdrawal and alterations in the 

cAMP second messenger cascade.  A significant increase in basal and forskolin-stimulated 
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adenylyl cyclase (AC) activity in the cerebellum was seen in THC-dependent mice treated 

with rimonabant (Hutcheson et al., 1998).  Also, higher levels of calcium-calmodulin 

stimulated AC were found in the cerebellum of THC-dependent rats in precipitated 

withdrawal than those found in non-dependent rats that were also administered rimonabant 

(Tzavara et al., 2000).  Tzavara and colleagues also found that a cAMP analog, Sp-8Br-

cAMP, actually induced these behavioral effects in vehicle treated mice.  From these 

studies, it can be suggested that up-regulation of cAMP signal transduction in the 

cerebellum may represent a critical biochemical event underlying precipitated withdrawal 

(Lichtman and Martin, 2005).   

 

Fatty Acid Amide Hydrolase 

  FAAH is a mammalian integral membrane enzyme that degrades the fatty acid 

family of endogenous signaling lipids including the endogenous cannabinoid anadamide.  

As mentioned previously, in 1992 Devane and colleagues found that anandamide was an 

endogenous ligand for the CB1 cannabinoid receptor which also recognizes THC.  

Anandamide has also been found to bind to the CB2 receptor (Calignano et al., 1998; Sokal 

et al., 2003).  Anandamide can cause some of the same pharmacological effects as THC 

including hypothermia, analgesia and motor dysfunction (Smith et al., 1994). Other studies 

have shown that CB1 (−/−) mice, as well as mice pretreated with the cannabinoid CB1 

receptor antagonist rimonabant, exhibit pharmacological effects following intravenously 

administered anandamide, suggesting a non-CB1 receptor mechanism of action (Smith et 

al., 1994; Adams et al., 1998; Di Marzo et al., 2000). Also, a recent double knockout study 
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(FAAH-/- and CB1 -/-) showed that the locomotor suppression is possibly not totally CB1 

mediated (Wise et al. 2007). The specific role that FAAH plays in the degradative process 

of anandamide was still unclear until the generation and characterization of a transgenic 

mouse model that lacked the FAAH enzyme.  These FAAH-/- mice were generated by 

standard targeted gene disruption procedures and were viable, healthy, and fertile.  Tissue 

samples were taken from the FAAH-/- mice and showed a 50- to 100-fold decrease in 

hydrolysis rates for anandamide and other fatty acid amides (FAAs), a 15-fold increase of 

anandamide in brain tissues (Cravatt et al., 2001), and an increase in peripheral tissues also 

(Weber et al. 2004).  These findings indicate that FAAH is the primary enzyme responsible 

for the hydrolytic breakdown of these lipids in vivo.  Greatly exaggerated behavioral 

effects were seen in the FAAH-/- mice following the administration of anandamide 

compared to wild-type mice.  These effects included hypomotility, analgesia, hypothermia 

and catalepsy as shown in the tetrad assay.  All of the effects of anandamide were blocked 

in FAAH-/- mice by rimonabant indicating that anandamide operates as a selective CB1 

ligand (Cravatt et al., 2001). 

 

Figure 3: The breakdown of anadamide by fatty acid amide hydrolase into arachidonic 
acid. 
   

  Endogenous anandamide and other FAAs were found to be over 10-fold higher 

throughout the nervous system in the FAAH-/- mice (Cravatt et al., 2001; Clement et al., 
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2003; Cravatt et al., 2004).  This drastic change in brain chemistry was interrelated with a 

CB1 -dependent analgesic phenotype in FAAH-/-  mice that was observed in many 

different pain sensation assays (Cravatt et al., 2001; Lichtman et al., 2004b). Thus, FAAH 

appears to set an endocannabinoid tone that regulates pain perception in the nervous 

system.   In the periphery, studies have shown that this enzyme may control other 

undetermined FAA-signaling pathways that modulate inflammation (Richardson et al., 

1998; Cravatt et al., 2004; Lichtman et al., 2004a; Lichtman et al., 2004b).  The FAAH-/- 

mice display no defects in motility, weight, or body temperature, therefore “indicating that 

the inactivation of FAAH produces a provocative subset of the behavioral effects caused 

by direct CB1 agonists” (McKinney and Cravatt, 2005). This pattern of results suggests that 

FAAH may represent a therapeutic target for the treatment of pain and inflammatory 

disorders and has stimulated interest in the development of specific inhibitors of this 

enzyme. 

  The objective of this thesis is to elucidate whether endogenous cannabinoid levels 

play a role in THC dependence.  Previous work has shown that FAAH-/- mice have normal 

CB1 receptor numbers and functions (Lichtman et al., 2002; Cravatt et al., 2004).  

However, with much higher endogenous cannabinoid levels, we might conclude that 

FAAH-/- mice would show less withdrawal signs as they are able to produce elevated 

cannabinoid levels.  Therefore, it is hypothesized that because FAAH-/- mice are able to 

maintain increased levels of anadamide, they will show less THC withdrawal signs. This 

effect may be seen because the endocannabinoid system may generate anandamide to 



www.manaraa.com

  14
   
occupy CB1 receptors and to compete with rimonabant while going through rimonabant-

precipitated withdrawal. 

  In order to test this hypothesis, I have examined the expression of THC dependence 

in FAAH +/+ mice and FAAH-/- mice.   I compared the degree of withdrawal effects in 

both genotypes using a low and high THC dosing regimen and examined the rimonabant 

dose-response curve on precipitated withdrawal to assess whether its potency is affected by 

genotype. 
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Methods 
 
 
 
Subjects 

  Male and female mice at least 8 weeks of age were used in all studies.  No 

significant sex differences were observed in any of the following studies.  FAAH (-/-) mice 

were derived from congenic FAAH (-/-) breeding pairs (12th generation back-cross on a 

C57BL/6J (Jackson Laboratory, Bar Harbor, ME) background).  The FAAH (+/+) mice 

were derived from FAAH (+/+) breeding pairs, which were the offspring of the 11th 

generation FAAH (+/-) breeding pairs on the C57BL/6J background.  Mice were housed 2 

- 4 per cage and maintained on a 12 hr light/dark cycle with food and water available ad 

libitum.  All studies were approved by the Institutional Animal Care and Use Committee at 

Virginia Commonwealth University. 

 

Drugs 

THC and SR141716 (rimonabant) were provided by the National Institute on Drug 

Abuse (Bethesda, MD).  All drugs were dissolved in a 1:1 mixture of absolute ethanol and 

alkamuls-620 (Rhone-Poulenc, Princeton, NJ) and diluted with saline to a final ratio of 

1:1:18 (ethanol:alkamuls:saline). The ethanol:alkamuls:saline combination was used as the 

vehicle treatment.  THC  injections were administered s.c. at an injection volume of 10 

ml/kg. Rimonabant was administered i.p. at an injection volume of 10ml/kg. 

 15 
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Experimental Apparatus 

  The observation apparatus for monitoring and data collection was an 8” x 8” closed 

cage, with the floor, ceiling, and side walls composed of a white acrylic plastic cube.  The 

cube was lowered into a larger clear acrylic enclosure through which a webcam (Fire-i 

firewire color webcam, Unibrain, San Ramon, CA) recorded the contents of the entire box.  

The rear of the box contained a mirror insert that allowed the reflection to be seen by the 

recording webcam that was connected to a computer running the AnyMaze software 

(Stoelting, Wood Dale, IL).  Accordingly, the observer was able to watch and record 

behavior without disturbing the test subject.  This observation chamber was kept inside a 

sound attenuating chamber. Confounds related to odor were addressed by cleaning both the 

maze and escape box with an ammonia based cleaner Whistle (Johnson Diversey, Inc., 

Sturtevant, WI) after each trial.  Subjects were recorded for a 30 min acclimation period, 

followed by a one hr withdrawal period.  The mouse was given its last subchronic injection 

and immediately placed in the observation box to acclimate to the environment.  Thirty 

min later, the mouse was given an i.p. injection of vehicle or rimonabant and placed back 

into the observation box to record withdrawal for one hr.  These video recordings were 

then scored using a key pad for the following measures: paw flutter, head twitch and hind 

leg scratching.  These three behaviors were used after preliminary studies showed these to 

be the most significant.  
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Dependence protocol 

 Mice were treated with a low THC dosing regimen protocol or a high THC dosing 

regimen protocol.  In the high dose regimen, mice were subcutaneously injected with THC 

(50 mg/kg) or vehicle twice each day for 5.5 days. Low dose regimen followed the same 

protocol except mice were given THC (10 mg/kg) once each day.  On the sixth day, mice 

were brought up to the lab and received their final treatment in the morning and placed in 

the test recording boxes to acclimate.  Thirty minutes after the final treatment the mice 

were administered vehicle or 10 mg/kg rimonabant and were placed back into the 

recording boxes.  They were recorded on the AnyMaze system during acclimation and 

after administration of vehicle or rimonabant.  Time sampling was used in counting the 

number of observed paw flutters, head twitches and hind leg scratching for a total of an 

hour.   Past experiments showed that the high dosing regimen did not show any differences 

between FAAH+/+ mice and FAAH-/- mice, therefore only FAAH+/+ mice were used in 

the inter-rater-reliability experiment.  A group that was subchronically administered THC 

and given a challenge dose of vehicle was not used because several studies have shown 

there is no abrupt withdrawal these mice (Cook et al., 1998; Lichtman et al., 2001a; 

Lichtman et al., 2001b).  

 

Evaluation of the dose-response relationship of rimonabant in precipitating withdrawal 

  The high dosing regimen was followed for the analysis of the effective dose of 

rimonabant.  Both FAAH +/+ and FAAH-/- mice were tested in groups of 5-6 split into 
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different challenge dose groups.  The challenge doses included vehicle or rimonabant (1, 3, 

or 10 mg/kg).  The maximal dose of 10 mg/kg was used because of the limit of solubility. 

The testing procedures followed that of the high and low dosing regimen as explained in 

the preceding paragraph.     

 

Scoring Protocol 

  The three behaviors of interest included paw flutters, head twitches and hind leg 

scratching. These three behaviors were focused on because past studies showed these to be 

the most significant and readily able to score.   Paw Tremors:  the visible shaking of one or 

both paws simultaneously in a manner inconsistent with normal motions and movements 

of the paw, and manifests itself during the lifting of one or both paws.  Head Twitching:  

the quick, successive movement of the head (at least twice in opposite directions) in a 

counterclockwise/clockwise fashion rather than a normal ordinal direction.  This is usually 

followed by an immediate righting to the original position.  Hind Leg Scratching: the rapid 

movement of a hind paw over a region on the topside of the animal (usually near whiskers, 

behind the ear, or rear end) in a repeated scratching/grooming motion.  Generally paired in 

rapid succession with hind paw licking. 

  The mice were videotaped for over a 60 min period in 5-minute bins separated by 

5-min break periods.  A time sampling was used to score the number of observed paw 

flutters and headshakes for a total of an hour. The time sample intervals were 5-10 

minutes, 15-20, 25-30, 35-40, 45-50 and 55-60 minutes following rimonabant challenge.  
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Thus, observations were recorded during the following intervals following rimonabant 

administration 5-10, 15-20, 25-30, 35-40, 45-50, and 55-60 minutes. 

 

Statistical analysis 

  A multifactorial ANOVA was conducted as appropriate to evaluate the effects 

using Statview for Windows version 5 (SAS Institute, Minneapolis, MN, USA). The two 

common factors of these experiments were genotype and treatment.  Significant ANOVA 

analyses were followed by a unifactorial or multifactorial Tukey/Kramer post-hoc and/or a 

Dunnett’s post-hoc analyses.  All differences were considered significantly different at 

p<0.05. 

  To determine potency of rimonabant in eliciting paw fluttering, the data were 

transformed to maximum percent effect (MPE) by taking the total response for each 

specific animal and dividing it by the Emax (i.e., average of the 10 mg/kg rimonabant 

dosing group) and multiplying this value by 100. ED50 values for rimonabant were then 

determined by least-squares linear regression followed by calculation of 95% confidence 

limits (Bliss, 1967).  All differences were considered significantly different at p<0.05. 
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Results 
 
 
 
Experiment 1: Replication of Somatic Rimonabant-Precipitated Withdrawal in THC-

Dependent Mice 

It was important to assess the ability of the experimenter to recognize, properly 

track and reliably reproduce past effects using the same methods as previous work. To 

ensure that there was adequate inter-rater-reliability, a preliminary study was conducted 

in which another experienced investigator and the author independently scored a set of 

data.  In this pilot study, C57Bl/6j mice were treated using the high dosing regimen 

described in the Methods section to establish THC dependence.  The mice were then 

challenged with rimonabant (10 mg/kg) to elicit strong somatic signs of THC-precipitated 

withdrawal.  The mice were videotaped during the withdrawal session using the 

AnyMaze System described in the Methods section.  Both experimenters independently 

viewed and scored the tapes.  A Pearson correlation coefficient was then calculated to 

determine the consistency between the experimenters. 

 20 
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Figure 4:  Correlation of all somatic behaviors measured between experimenter 1 and 
present experimenter (2).  The r value was found to be a strong correlation of 0.99 with a 
slope of 0.97. 
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Double Paw Fluttering
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Figure 5:  The number of incidents in which mice simultaneously fluttered both arms was 
scored as described in the Methods section.  A strong correlation of double paw flutters 
between experimenter 1 and present experimenter (2) was found with r =0.97 with a slope 
of 0.98. 
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Head Twitches
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Figure 6:  The number of incidents in which head twitches occurred was scored as 
described in the Methods section.  Correlation value of head twitch behavior between 
experimenter 1 and experimenter 2 was found to be r =0.95 with a slope of 0.96. 
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Hind Leg Scratching
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Figure 7:  The amount of time that the mice spent scratching with their hind leg scratching 
was recorded in seconds (s).  Correlation of hind leg scratching behavior between 
experimenter 1 and present experimenter (2) was found to be r = 0.99 with a slope of 0.99. 
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For all behaviors combined, the correlation between experimenter 1 and 

experimenter 2 is shown in figure 4 and was found to be 0.99 with a slope of 0.97.  For the 

behavioral measure of double paw flutters during withdrawal, the correlation was found to 

be 0.97 with a slope of 0.98 shown in figure 5.  Figure 6 shows the correlation for head 

twitches and was found to be 0.95 with a slope of 0.96.  The hind leg scratching correlation 

is shown in figure 7 and was found to be 0.99 with a slope of 0.99.  For the inter-rater-

reliability experiment, a sample size of 6 mice was used for all measures.  The results from 

this high dosing regimen show strong somatic signs of THC precipitated withdrawal in 

C57Bl/6j mice and consistently the correlation between experimenters was close to 1 and 

the slope was approaching 1.   
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Paw Fluttering

VEH/VEH VEH/Rim THC/Rim

0
25
50
75

100
125
150
175

FAAH+/+

*

Chronic/Challenge Treatment

N
um

be
r 

of
 F

lu
tt

er
s

Figure 8:  Rimonabant (Rim) precipitates an increase of paw flutters in THC-dependent 
mice.  Mice were given vehicle or 50 mg/kg THC twice a day for 5.5 days and 
administered vehicle (VEH) or 10 mg/kg rimonabant to precipitate withdrawal on day 6. 
Repeated injections (VEH or THC) were given s.c., acute injections (rimonabant) were 
given i.p.  *= p<.05 versus vehicle, N=6 mice/group. 
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Head Twitch
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Figure 9:  Rimonabant (Rim) precipitates an increase in head twitching behavior.  Mice 
were given vehicle or 50 mg/kg THC twice a day for 5.5 days and administered vehicle or 
10mg/kg rimonabant to precipitate withdrawal on day 6. Repeated injections (veh or THC) 
were given s.c., acute injections (rimonabant) were given i.p.   *= p<.05 versus vehicle, 
N=6 mice/group. 
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Hind Leg Scratching

VEH/VEH VEH/Rim THC/Rim

0
50

100
150
200
250
300
350
400
450

FAAH+/+

*

Chronic/Challenge Treatment

Sc
ra

tc
hi

ng
 (s

)

 
Figure 10:  Rimonabant (Rim) precipitated an increase in hind leg scratching in mice 
treated chronically with vehicle.  Mice were given vehicle or 50 mg/kg THC twice a day 
for 5.5 days and administered vehicle or 10 mg/kg rimonabant to precipitate withdrawal on 
day 6. Repeated injections (veh or THC) were given s.c., acute injections (rimonabant) 
were given i.p.    *= p<0.05 versus vehicle, N=6 mice/group. 



www.manaraa.com

  29
   

From the data presented, it can be seen that rimonabant elicited a complex pattern 

of somatic signs across the three dependent measures.  Rimonabant precipitated a 

significant increase in paw flutter in mice assigned to the high THC dosing regimen 

[F(2,15)=13, p<.001].  However, rimonabant elicited significant increases in head 

twitching regardless of subchronic treatment [F(2,15)=5, p<.05].  Lastly, figure 10 shows 

that rimonabant elicited a significant increase in hind leg scratching in mice that had been 

given repeated injections of vehicle, but not in mice that had received THC [F(2,15)=16, 

p<.001].   Rimonabant precipitated an increase of paw flutters in THC-dependent mice but 

not mice subchronically treated with vehicle.  Rimonabant precipitated an increase in head 

twitching behavior irrespective of subchronic THC treatment. Rimonabant elicited an 

increase in hind leg scratching in mice treated subchronically with vehicle but not THC 

treated mice.   

 

Experiment 2: Somatic THC Withdrawal in FAAH+/+ Mice vs. FAAH-/- Mice Using a 

Low Dose Regimen   

Based on pilot work in our laboratory, we employed a low to moderate THC dosing 

regimen described in the Methods section.   A sample size of 8-12 mice/group was used.  It 

was found that rimonabant challenge in mice assigned to this moderate THC dosing 

regimen, precipitated significant increases in paw fluttering. 
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Figure 11: Rimonabant (Rim) precipitated an increase in paw fluttering behavior in mice 
given a moderate subchronic THC dosing regimen.  Mice were given vehicle or 10mg/kg 
THC once a day for 5.5 days and administered vehicle or 10mg/kg rimonabant to 
precipitate withdrawal on day 6. Repeated injections (veh or THC) were given s.c., acute 
injections (rimonabant) were given i.p.    *= p<.05 versus VEH/VEH and VEH/Rim.  Mice 
chronically treated with THC, followed by acute rimonabant, showed a significant increase 
in paw fluttering but no significant difference was found between genotypes. N=6 
mice/group.  Open bars represent FAAH+/+ mice and closed represent FAAH-/- mice. 
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Figure 12:  Rimonabant (Rim) precipitated an increase in number of head twitches in 
THC-dependent mice.  Mice were given vehicle or 10mg/kg THC once a day for 5.5 days 
and administered vehicle or 10mg/kg rimonabant to precipitate withdrawal on day 6. 
Repeated injections (veh or THC) were given s.c., acute injections (rimonabant) were 
given i.p.    *= p<.05 versus VEH/VEH.  Mice chronically treated with THC, followed by 
acute rimonabant, showed a significant increase in head twitches but no significant 
difference was found between genotypes. N=6 mice/group. Open bars represent FAAH+/+ 
mice and closed represent FAAH-/- mice. 
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Figure 13:   Rimonabant (Rim) precipitated an increase in hind leg scratching in 
chronically vehicle treated mice.  Mice were given vehicle or 10mg/kg THC once a day for 
5.5 days and administered vehicle or 10mg/kg rimonabant to precipitate withdrawal on day 
6. Repeated injections (veh or THC) were given s.c., acute injections (rimonabant) were 
given i.p.    *= p<.05 versus VEH/VEH and THC/Rim.  Mice chronically treated with 
vehicle followed by acute rimonabant showed a significant increase in hind leg scratching 
but no significant difference was found between genotypes. N=6 mice/group.  Open bars 
represent FAAH+/+ mice and closed represent FAAH-/- mice. 
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Analysis of data collected in experiment 2 shows a significant treatment effect 

[F(2,26)=98, p<.0001] but no significant difference was found between genotypes 

[F(1,26)=1, p=.4] in paw fluttering (figure 11).   No interaction was found [F(2,26)=.3, 

p=.8].  A Tukey post-hoc test was run and found that a significant increase in paw flutters 

occurs in the THC/Rim group as compared to the Veh/Rim and Veh/Veh groups.  Figure 

12 shows the data collected for head twitches and a significant treatment effect was found 

[F(2,26)=6, p=.01]  but no significant difference was found between genotypes [F(1,26)=1, 

p=.3].  A Tukey post-hoc test was run and found that a significant increase in head 

twitches occurs in the THC/Rim group as compared to the Veh/Veh group.  There was no 

significant difference between the Veh/Rim and THC/Rim groups.  A significant treatment 

effect was found with hind leg scratching behavior [F(2,26)=35, p<.0001] but no 

significant difference was found between genotypes [F(1,26)=.3, p=.6] as shown in figure 

13.   A Tukey post-hoc test was run and found that a significant increase in hind leg 

scratching occurs in the THC/Rim group as compared to both the Veh/Rim and Veh/Veh 

groups.   

 

Experiment 3: Evaluation of the Dose-Response Relationship of Rimonabant in 

Precipitating Withdrawal in FAAH+/+ Mice vs. FAAH-/- Mice 

The purpose of this study was to determine whether rimonabant shows a difference 

in potency in eliciting withdrawal responses between FAAH+/+ mice and FAAH -/- mice. 

In order to address this issue, both genotypes were placed through the high dosing regimen 
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described in the methods section.  Thirty min after their final THC injection, each mouse 

was given an injection of vehicle or rimonabant (1, 3, or 10 mg/kg) with 5 to 6 mice/group 
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Figure 14:  Rimonabant precipitates a dose-related increase in paw fluttering in FAAH-/- 
mice and FAAH+/+ mice. Mice were given 50 mg/kg THC twice a day for 5.5 days and 
administered vehicle, 1mg/kg, 3mg/kg or 10mg/kg rimonabant to precipitate withdrawal 
on day 6. Repeated injections (THC) were given s.c., acute injections (rimonabant) were 
given i.p.    N=5-6 mice/group.  Open symbols represent FAAH+/+ mice and closed 
represent FAAH-/- mice. 
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Figure 15:  Rimonabant precipitates a significant increase in head twitches in FAAH-/- 
mice at all doses and in FAAH+/+ mice at 3mg/kg and 10mg/kg. Mice were given 
50mg/kg THC twice a day for 5.5 days and administered vehicle, 1mg/kg, 3mg/kg or 
10mg/kg rimonabant to precipitate withdrawal on day 6. Repeated injections (THC) were 
given s.c., acute injections (rimonabant) were given i.p.   N=5-6 mice/group.  Open 
symbols represent FAAH+/+ mice and closed represent FAAH-/- mice. 
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Figure 16:  Rimonabant precipitates a significant increase in hind leg scratching at 
1mg/kg.  Mice were given 50mg/kg THC twice a day for 5.5 days and administered 
vehicle, 1mg/kg, 3mg/kg or 10mg/kg rimonabant to precipitate withdrawal on day 6. 
Repeated injections (THC) were given s.c., acute injections (rimonabant) were given i.p.    
N=5-6 mice/group.  Open symbols represent FAAH+/+ mice and closed represent FAAH-
/- mice. 
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Analysis of the range of rimonabant doses shows that for THC withdrawal 

symptom of paw fluttering, a treatment effect was found [F(3,37)=38, p<.0001].  There 

was no significant difference found between genotypes [F(1,37)=.1, p=.8] and no 

interaction was found [F(3,37)=.5, p=.7].  A Dunnett’s post-hoc test revealed a significant 

treatment effect at 3mg/kg and 10mg/kg compared to vehicle.  Head twitching data were 

analyzed and a significant treatment effect was found [F(3,37)=12, p<.0001].  No 

significant differences between genotypes [F(1,37)=.5, p=.5] and no interaction was found 

[F(3,37)=.6, p=.7].  A Dunnett’s post-hoc test was run showing a significant increase in 

head twitching at all rimonabant doses when compared to vehicle.  A significant treatment 

effect was also found for hind leg scratching [F(3,37)=5, p<0.01].  No interaction was 

found [F(3,37)=2, p=.2].  Although the statistical analysis shows a significant genotype 

effect in the hind leg scratching behavior [F(1,37)=4, p<.05], upon closer inspection and 

comparison to the other studies, it appears that the magnitude indicates that it is not 

relevant.  The data shows that this genotype difference occurs at a single intermediate dose.  

A Dunnett’s post-hoc test was run showing a significant increase in hind leg scratching 

only at 1mg/kg compared to vehicle. 

From the most significant THC withdrawal behavior, paw fluttering, FAAH+/+ 

mice have an ED50 of 2.9 mg/kg (95% CI 2 to 4 mg/kg) and FAAH-/- mice have an ED50 

of 2.9 mg/kg (95% CI 2 to 5 mg/kg).  The potency ratio was found to be 1 for both 

genotypes.  These findings suggest that there are no differences in the expression on THC 

withdrawal symptoms between FAAH+/+ mice and FAAH-/- mice and that rimonabant is 

equipotent. 
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Discussion 
 
 
 

The main objective of this thesis was to investigate if mice lacking fatty acid amide 

hydrolase, the main enzyme to break down anandamide, had a different pattern of THC 

dependence.  It was hypothesized that because FAAH-/- mice possessed high levels of 

anandamide, that they  would show less THC withdrawal symptoms than wild type mice.  

Work provided in this thesis could possibly provide proof of principle as to whether 

elevating endogenous anandamide levels would make effective treatment targets for 

cannabinoid dependence. 

The experiment investigating the ED50 of rimonabant in the FAAH +/+ mice and 

FAAH-/- mice was carried out to investigate if the elevated anadamide levels in FAAH-/- 

mice could possibly attenuate or prevent the appearance of withdrawal effects under a 

more mild cannabinoid blockade and withdrawal by creating a rightward shift in the 

rimonabant dose-response curve.  While not necessarily physiologically relevant, the high 

dosing regimen was chosen for the ED50 study because the previous experiments have 

shown that the behavioral signal decreases with decreased chronic dosing, therefore the 

high dosing regimen would allow for greater sensitivity to detect differences in effects.  

From the paw fluttering THC withdrawal behavior studied here, FAAH+/+ mice have an 

ED50 of  2.9 mg/kg (95% CI 2 to 4 mg/kg) and FAAH-/- mice have an ED50 of 2.9 mg/kg 

 38 
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(95% CI 2 to 5 mg/kg).  Even with the deletion of the enzyme FAAH, the potency ratio 

was found to be 1 for both genotypes.   

From the high dosing regimen, the results show a significant increase in paw 

fluttering compared to the acutely treated vehicle or rimonabant groups.  The same is seen 

in the low dosing regimen with no differences in genotype.  Previous work using the same 

high dosing regimen produced a similar pattern of results with no differences in genotype 

(Thorpe et al. 2006).  From the results showing no significant difference in paw fluttering 

between FAAH +/+ mice and FAAH-/- mice, it can be concluded that the hypothesis that 

FAAH-/- mice will express less THC withdrawal symptoms than FAAH +/+ mice cannot 

be supported.   

It is unclear if head twitching represents a precipitated withdrawal sign in 

FAAH+/+ and FAAH-/- mice from the data collected for this thesis.  In the high dose 

regimen it was seen that along with THC-dependent animals, vehicle-treated mice also 

displayed a significant increase in the head twitching behavior, but the low dosing regimen 

does not show a significant increase in head twitching in the vehicle treated animals.  From 

these data, it appears that this measure is dependent on the dose in the chronic treatment. 

Others have also reported that rimonabant given alone elicits head twitching. Cook et al. 

(1998) reported that THC-dependent mice exhibited a significant increase in head 

twitching upon challenge with rimonabant, but these twitches were also elevated in control 

mice receiving an injection of rimonabant similar to our data.  Likewise, Hutcheson et al. 

(1998) found that rimonabant elicited increases in twitching in both vehicle treated mice 

and cannabinoid treated mice. Finally, in another study that used a shortened THC dosing 
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regimen, rimonabant elicited a dose-dependent increase in head twitching regardless of 

THC treatment (Lichtman et al., 2001a).  In general, studies in which head twitching was 

indicative of withdrawal used higher dosing regimens (Cook et al., 1998; Hutcheson et al., 

1998).  Thus, high doses of THC may result in the recruitment of other withdrawal 

behaviors in humans and laboratory animals.  

Our data show that the lowest dose to elicit a significant magnitude of hind leg 

scratching behavior is at a rimonabant dose of 1mg/kg only.  At a rimonabant dose of 

10mg/kg, the somatic THC withdrawal signs are predominantly characterized by paw 

fluttering.  From these studies, mice placed through precipitated THC-withdrawal show 

high level of fluttering and do not show the same level of scratching behavior as those 

mice receiving rimonabant alone.  In the present study, low doses of rimonabant produced 

a slight (but significant) elevation in hind leg scratching behavior in both FAAH+/+ and 

FAAH-/- THC-dependent mice.  Alone, rimonabant has been reported to elicit scratching 

in rats (Aceto et al., 1996) and mice (Cook et al., 1998) and has also been reported to have 

other behavioral actions such as anxiety-like responses in the defensive withdrawal test and 

elevated plus-maze (Navarro et al., 1997), increased locomotor activity (Compton et al., 

1996), hyperalgesia (Richardson et al., 1998), anorexic effects (Di Marzo et al., 2001), and 

memory enhancing effects (Terranova et al., 1996).  From the results reported in this thesis 

along with these studies, it can be concluded that hind leg scratching cannot be designated 

as a THC-withdrawal effect and is a rimonabant effect. 

As a consequence of precipitating a severe and stable withdrawal effect at high 

THC doses, there were several notable incidences of lethal convulsant events.  
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Approximately 10% of the entire group of laboratory animals run at a high dosing regimen 

died before sacrificing was done at the end of the last group of mice run on that particular 

testing day.  All animals died within two hours of high dose rimonabant precipitated 

withdrawal.  These animals displayed severe convulsions immediately before death.  

Research on the convulsant activity of cannabinoids and in FAAH-/- mice has been mixed 

(Karler et al., 1974; Clement et al., 2003) and within this study we found similar chances 

of convulsing across the genotypes. 

Other work has shown that the degree of physical dependence, as measured by 

precipitated increases in paw flutters, was affected by the dose of THC and dosing 

schedule as this thesis data shows.  In one study, rimonabant precipitated approximately 

40–55 paw tremors during a 45-min observation period in mice given 10 to 20 mg/kg THC 

twice a day for 6 days (Hutcheson et al., 1998). In another study, rimonabant given to mice 

injected with 10 mg/kg THC twice a day for 6.5 day led to approximately 100 paw tremors 

during a 30-min period (Cook et al., 1998). In yet another study, mice dosed with THC 

10 mg/kg twice a day for only 2.5 days and challenged with rimonabant exhibited between 

30 and 45 paw tremors (Lichtman et al., 2001a). Compared to the data presented in this 

thesis, these data indicate that with a higher frequency of low to moderate THC dosing 

there is an elevated level of paw fluttering withdrawal behaviors similar to those found for 

the high dosing regimen in the experiments carried out. 

The severe regimen used here may have been so severe that the changes in 

endocannabinoid levels may be masked by the high levels of THC.  Therefore, the low 

dosing regimen was utilized to simulate a physiologically relevant dose of THC as 
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compared to humans.  Inhalation is the usual route of administration in humans and a 

cannabis cigarette may contain from 10mg of THC but if laced with hashish oil can reach 

300mg (approximately between .14 to 4.3 mg/kg for a 70kg individual).  About 50% of 

this amount of THC is inhaled in mainstream smoke and almost all of this THC is 

absorbed through the lungs (Ashton 2001).  While the low dosing regimen employed in the 

present study may be considered high on the human scale, it has been estimated that on a 

body weight basis, humans are generally more vulnerable to chemicals than are mice by a 

factor of 10 (Eaton and Klaassen, 1996).   

When looking at antinociception and oral administration of THC, (Noyes et al., 

1975) and colleagues found that in humans the ED50=0.24 mg/kg and (Cichewicz and 

McCarthy, 2003) found that in mice the ED50= 89.4 mg/kg.    Our low to moderate dosing 

(10mg/kg) regimen represents a dose that is consistently lower than the behavioral ED50s 

of most studies of acute THC effects in mice (Thorpe et al. 2006; (Cravatt et al., 2001).  

Although mice usually require substantially higher doses of cannabinoids than humans to 

achieve analogous effects, the fact that cannabinoids elicit similar pharmacological effects, 

such as motor suppression, increased feeding, antinociception, memory deficits, and 

tachycardia in both species, supports the utility of the mouse model (Howlett et al., 2002).  

Along with the fact that humans are more vulnerable to chemicals, Wilson et al. (2006) 

found that the induction of THC physical dependence, as characterized by rimonabant-

precipitated increases in paw fluttering, was related to the amount of marijuana smoke or 

intravenous THC to which the mice were exposed.  One of the most important, and 

fascinating, observations in the studies presented here was that the same behavioral effects 
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were seen in the animal groups in the low-dose regimen as were seen in the high dosing 

regimen, just to a lower degree.  Degree of dependence relates to the chronic dosing 

regimen and is dose dependent.  

As mentioned in the Methods section, the maximum dose of rimonabant was 10 

mg/kg and this was chosen because of the drug’s limits of solubility.  Also, (Compton et 

al., 1996) and colleagues found rimonabant had a direct effect on locomotor activity at 

doses higher than 3 mg/kg and found that rimonabant had an ED50 value of 4.7 (+/- 1.5) 

mg/kg. This study showed that rimonabant has significant effects at lower doses and 

supports 10 mg/kg rimonabant as the maximal dose. The rimonabant effects in relation to 

precipitated withdrawal were shown to be blocked by THC and worked regardless of the 

THC treatment in our studies. 

Although there are two specific procedures to induce states of withdrawal in a 

drug-dependent animal, abstinence withdrawal and precipitated withdrawal, only 

precipitated withdrawal using the selective CB1 antagonist rimonabant was studied here 

because abstinence withdrawal presents many difficulties with THC having a long half life 

and a low incident of behavior when trying to quantify the withdrawal symptoms. The 

selective CB1 antagonist, rimonabant, was developed and was found in rodents to block the 

centrally mediated effects of cannabinoids and also block tachycardia and the subjective 

effects of smoked marijuana in humans (Huestis et al., 2001).  Unlike humans where 

subjective effects can be obtained verbally, laboratory animals present more of a challenge.  

The long half life of THC and delay of effects contribute to the difficulty in studying 

withdrawal in non-human animals (Lichtman and Martin 2006).  Accordingly, studies on 
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abstinence withdrawal in laboratory non-human animals following chronic cannabinoid 

administration has led to varied results.  (Kaymakcalan and Deneau, 1972) observed a 

variety of behavioral effects including tremors, anorexia and hyperirritability.  Others have 

been unsuccessful in observing any withdrawal effects following chronic THC 

administration in dogs or rats (Leite and Carlini, 1974). 

Many human studies have used  reports of cannabis abstinence withdrawal 

syndrome came from outpatient studies and the lack of experimental control made it 

difficult to associate the results with cannabis use alone and criticism falls on the 

methodological weaknesses, procedural differences, degree of consistency and degree of 

control in abstinence THC-withdrawal studies (Smith, 2002).  On the other hand, studies 

on precipitated cannabis withdrawal have shown that many laboratory animals including 

mice, rats and dogs chronically administered cannabinoid agonists have quantifiable 

somatic withdrawal symptoms immediately following administration of rimonabant 

(Lichtman and Martin, 2006).  These precipitated withdrawal studies are relevant to human 

withdrawal because they show that there are withdrawal syndromes across many species.  

Studies have shown that the CB1 receptor is highly evolutionarily conserved with 97-99% 

amino acid sequence identity across species in rat, mouse, and in humans (Howlett et al., 

2002).  The conservation of this receptor suggests that there is a high likelihood that the 

cellular adaptations and pharmacological mechanisms are similar (Howlett et al., 2002). 

Repeated stimulation of the CB1 receptors is required for the development of 

cannabinoid dependence.  Studies over the past decade have determined that CB1 receptors 

undergo downregulation (i.e., decrease in number of receptors) and desensitization (i.e., G-
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protein uncoupling) following chronic administration of THC or synthetic cannabinoid 

agonists.  The adaptations are regionally widespread and of substantial magnitude.  These 

adaptations are thought to influence tolerance to cannabinoid-mediated behavioral effects.  

It appears that alterations in cyclic adenosine monophosphate (cAMP) and protein kinase 

A (PKA) activity may be particularly important in cannabinoid dependence but has been 

difficult to characterize (Sim-Selley, 2003).   This thesis was done in part to determine the 

ultimate cannabis dependence pathway.  Both pharmacokinetic and pharmacodynamic 

characteristics contribute to the specific withdrawal symptoms, intensity and onset.  It is 

important to investigate the mechanisms of THC dependence and withdrawal syndrome 

because human participants in THC-withdrawal studies have described the feeling as an 

unpleasant experience.  Uncovering the mechanisms of THC withdrawal in humans may 

facilitate the development of treatment for those individuals who may fear these unpleasant 

experiences, which are defined as anxiety, irritability, depression, physical tension and 

physical discomfort, when trying to discontinue using the drug (Jones and Benowitz, 1976; 

Jones et al., 1976; Haney et al., 1999b).   

Although these pharmacological effects might reflect the blockade of endogenous 

cannabinoid tone, the responses may also be due to intrinsic effects of rimonabant.  Studies 

have confirmed that cannabinoid agonists stimulate Gi/o-protein activity (Sim et al., 1996; 

Burkey et al., 1997) but conversely, in vitro experiments have suggested that rimonabant 

actually works as an inverse agonist at the receptor, producing the opposite biochemical 

effects of the agonist causing a decrease in G-protein activity in many cell types 

(Landsman et al., 1997; Pan et al., 1998).  The relevancy of this inverse agonism in 
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animals has not yet been determined, but it has been confirmed that rimonabant is 7000-

times more potent as an CB1 receptor antagonist than as an inverse agonist (Sim-Selley et 

al., 2001).  With this in mind, appropriate controls for the effect of rimonabant alone were 

used throughout these experiments.  Taking these results into consideration, it remains to 

be determined if rimonabant elicits scratching through inverse agonism, action at some 

other site than the CB1 receptor, or by inhibition of endogenous cannabinoid activity 

Even though Cannabis sativa derivatives, such as marijuana and hashish, are the 

most widely used illicit substances in the world, some believe that it has medicinal value.  

Although oral THC (Marinol®) is available, inhalation has advantages with its rapid onset, 

allows the patient to titrate the dose and circumvents the liver’s first-pass effect (Ohlsson 

et al., 1980; Barnett et al., 1982; Chiang and Barnett, 1984; Johansson et al., 1987; Huestis 

et al., 1992; Cone and Huestis, 1993). In 2006, Johnston and colleagues reported 42.3% of 

12th graders have a lifetime prevalence of marijuana use.  With this large percentage of 

young users, more and more are seeking treatment for cannabis related issues and there is a 

growing amount of literature showing a clinically relevant marijuana withdrawal syndrome 

(Budney et al., 1999).  

The DSM-IV does not include a cannabis withdrawal syndrome and states that 

“symptoms of cannabis withdrawal…have been described…but their clinical significance 

is uncertain” (p.235) and this issue of cannabis having a withdrawal syndrome is under 

constant controversy.  There is however a growing body of evidence with past and recent 

studies that indicate that cannabis-dependent individuals experience a significant physical 

withdrawal syndrome following the cessation of marijuana smoking (Lichtman and Martin, 
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2006).  Human studies done by several groups have shown that  following abrupt cessation 

from chronic THC, users show symptoms of anxiety, irritability, decrease in appetite, 

depression, physical tension and physical discomfort (Jones and Benowitz, 1976; Jones et 

al., 1976).   

Information presented in this thesis should contribute to the body of knowledge on 

the pharmacology of THC and anandamide and the investigation of FAAH.  We show that 

even with the dramatic increase in anandamide in FAAH-/- mice, there are no differences 

in expression of THC dependence from FAAH+/+ mice. We also show that the FAAH KO 

mice that were administered vehicle subchronically, then treated with a challenge dose of 

rimonabant, did not go through precipitated withdrawal showing that the elevated levels of 

anandamide was not enough to produce withdrawal in FAAH-/- mice.  We show that the 

precipitated withdrawal effects are influenced by dose and regimen.  The observation that 

rimonabant can precipitate withdrawal effects following a low dosing regimen of THC 

raises concern that even a few consecutive days of recreational or therapeutic cannabinoid 

use could lead to the development of physical dependence in humans.  Finally, the potency 

of rimonabant to precipitate paw fluttering is not influenced by the FAAH genotype.   

The lack of genotype differences between FAAH (-/-) and wild type mice suggests 

that the elevated levels of anandamide in FAAH -/- have insufficient influence to prevent 

THC-withdrawal.  The results from these studies suggest for additional investigation into 

studies comparing the cannabinoid activity of anandamide to THC.    One question that 

arises from these results is the efficacy and potency of anandamide to attenuate withdrawal 

symptoms.  THC has been shown to dose-dependently reverse rimonabant-precipitated 
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symptoms in animal models of precipitated THC-withdrawal (Wilson et al. 2006).  While 

the question of the underlying mechanisms of precipitated withdrawal remains 

unanswered, the present study indicates that FAAH does not play a substantial role.  From 

the studies showing that THC interferes with the cAMP signaling pathway, cAMP levels 

could be investigated.  Hutcheson and colleagues found that after removing brains from 

THC-dependent mice administered rimonabant to precipitate withdrawal, there was an 

increase in basal, forskolin and calcium/calmodulin stimulated adenylyl cyclase activities 

observed in the cerebellum (1998).  Perhaps a cAMP rebound effect drives the severe 

somatic behavioral symptoms by causing a dramatic increase in exciting the signaling path.   

The work completed for this thesis contributed to the scientific field by showing 

that despite the elevated anandamide levels, FAAH-/- mice show normal responses to 

exogenous cannabinoids. The results of the present study suggest that FAAH inhibitors 

may not be sufficient to provide therapeutic efficacy in the treatment of cannabinoid 

withdrawal, but FAAH inhibitor studies should be conducted because FAAH -/- mice, 

which have had none of the enzyme throughout ontogeny, may have developed 

compensatory systems.  Therefore, FAAH inhibitor studies may show the prevention of the 

expression of rimonabant-precipitated withdrawal. 
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